Quantile-adaptive Model-free Variable Screening for High-dimensional Heterogeneous Data

نویسندگان

  • BY XUMING HE
  • LAN WANG
  • HYOKYOUNG GRACE HONG
  • Eugene M. Lang
چکیده

We introduce a quantile-adaptive framework for nonlinear variable screening with high-dimensional heterogeneous data. This framework has two distinctive features: (1) it allows the set of active variables to vary across quantiles, thus making it more flexible to accommodate heterogeneity; (2) it is model-free and avoids the difficult task of specifying the form of a statistical model in a high dimensional space. Our nonlinear independence screening procedure employs spline approximations to model the marginal effects at a quantile level of interest. Under appropriate conditions on the quantile functions without requiring the existence of any moments, the new procedure is shown to enjoy the sure screening property in ultra-high dimensions. Furthermore, the quantile-adaptive framework can naturally handle censored data arising in survival analysis. We prove that the sure screening property remains valid when the response variable is subject to random right censoring. Numerical studies confirm the fine performance of the proposed method for various semiparametric models and its effectiveness to extract quantilespecific information from heteroscedastic data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Quantile Regression with Adaptive Lasso Penalty for Dynamic Panel Data

‎Dynamic panel data models include the important part of medicine‎, ‎social and economic studies‎. ‎Existence of the lagged dependent variable as an explanatory variable is a sensible trait of these models‎. ‎The estimation problem of these models arises from the correlation between the lagged depended variable and the current disturbance‎. ‎Recently‎, ‎quantile regression to analyze dynamic pa...

متن کامل

Adaptive penalized quantile regression for high dimensional data

We propose a new adaptive L1 penalized quantile regression estimator for highdimensional sparse regression models with heterogeneous error sequences. We show that under weaker conditions compared with alternative procedures, the adaptive L1 quantile regression selects the true underlying model with probability converging to one, and the unique estimates of nonzero coefficients it provides have ...

متن کامل

Globally Adaptive Quantile Regression with Ultra-high Dimensional Data.

Quantile regression has become a valuable tool to analyze heterogeneous covaraite-response associations that are often encountered in practice. The development of quantile regression methodology for high dimensional covariates primarily focuses on examination of model sparsity at a single or multiple quantile levels, which are typically prespecified ad hoc by the users. The resulting models may...

متن کامل

Bayesian Quantile Regression with Adaptive Elastic Net Penalty for Longitudinal Data

Longitudinal studies include the important parts of epidemiological surveys, clinical trials and social studies. In longitudinal studies, measurement of the responses is conducted repeatedly through time. Often, the main goal is to characterize the change in responses over time and the factors that influence the change. Recently, to analyze this kind of data, quantile regression has been taken ...

متن کامل

Conditional quantile screening in ultrahigh - dimensional heterogeneous data

To accommodate the heterogeneity that is often present in ultrahigh-dimensional data, we propose a conditional quantile screening method, which enables us to select features that contribute to the conditional quantile of the response given the covariates. The method can naturally handle censored data by incorporating a weighting scheme through redistribution of the mass to the right; moreover, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013